Mesure en ligne des composés azotés et carbonés

Applications

- · Pilotage du traitement des eaux usées
- · Surveillance des eaux de surface
- · Contrôle de l'eau potable
- · Applications industrielles spécifiques

Avantages

- Précision et fiabilité par mesure d'atténuation et analyse du spectre d'absorption UV complet de 200 à 360 nm
- · Mesures in situ et continues
- · Fenêtre optique avec revêtement pour minimiser l'encrassement
- · Calibrations d'application pré-installées
- · Compensation automatique fonction de la turbidité de l'eau

Analyse du spectre d'absorption de l'eau

OPUS est un spectromètre miniature haut de gamme pour les mesures en ligne des composés azotés et carbonés. Par l'analyse du spectre d'absorption de l'eau, le capteur fournit des mesures fiables des concentrations en $\mathrm{NO_3}$ -N et $\mathrm{NO_2}$ -N et des paramètres organiques tels que la $\mathrm{DCO_{eq}}$, la $\mathrm{DBO_{eq}}$, le $\mathrm{COD_{eq}}$ et le $\mathrm{COT_{eq}}$.

L'analyse du spectre d'absorption de 200 à 360 nm, est affinée par une calibration adaptée à votre application. 6 familles de calibrations sont proposées :

- · Entrée station de traitement des eaux usées
- · Sortie station de traitement des eaux usées
- Procédé Anammox
- · Fau de rivière
- · Eau de mer
- · Eau potable

L'instrument peut être calibré pour la mesure d'un paramètre ou de plusieurs simultanément.

Solutions d'intégrations

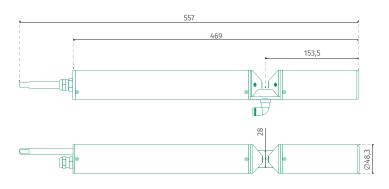
L'OPUS dispose de la nouvelle interface G2 qui permet un accès rapide aux données et aux configurations du capteur à l'aide d'un navigateur Web sur ordinateur, tablette et smartphone.

L'installation du capteur se fait directement dans le milieu, même en eaux très chargées, ou en cellule de mesure (platine et station de mesure)

La sonde OPUS dispose de nombreux accessoires pour optimiser son intégration dans les process, automatiser son nettoyage et faciliter l'exploitation des données de mesures. Les campagnes de mesures et applications mobiles sont également possibles avec un système batterie en option.

Une lampe Flash au xénon émet une lumière à large spectre dirigée en un faisceau de longueurs d'ondes parallèles vers le chemin optique pour traverser le milieu. Les composés présents dans l'eau absorbent la lumière sur des longueurs d'ondes qui leur sont spécifiques.

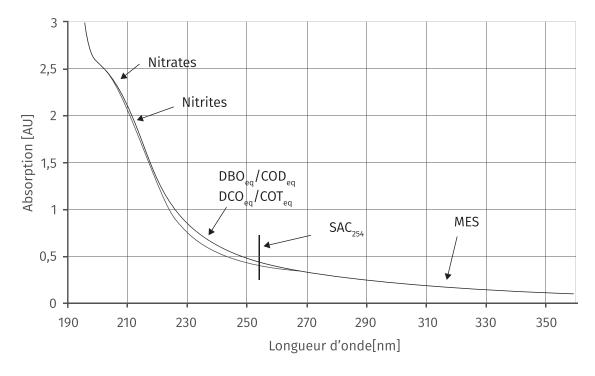
La lumière ainsi reçue est ensuite diffractée et mesurée par une photo-diode à 256 canaux.


La sonde mesure alors l'atténuation de lumière pour définir le spectre d'absorption du milieu de 200 à 360 nm.

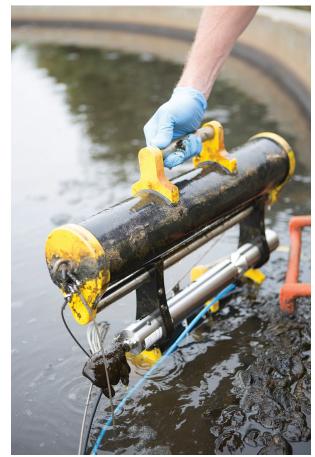
Sur la base de nombreux enregistrements de spectres d'absorptions en lien avec l'application, le capteur réalise une combinaison entre le spectre d'absorption obtenu et le profil d'eau le plus proche pour affiner les calculs de concentrations (règles de calculs LSA).

Caractéristiques techniques

	Source de lumière	Lampe Flash xénon				
		Spectromètre miniature de haute qualité				
Technologie de mesure	Détactour	256 canaux				
	Détecteur	200 à 360 nm				
		0,8 nm/pixel				
Principe de mesure		Mesure d'atténuation et analyse du spectre d'absorption				
Chemin optique		0,3 mm, 1 mm, 2mm, 5 mm, 10 mm, 50 mm				
Paramètres		ef licta das paramàtras n 12				
Gammes de mesure		cf. liste des paramètres p.12				
Précisions de mesure		cf. liste des paramètres p.12				
Compensation de la turbidi	+á	cf. liste des paramètres p.12 Automatique				
'	te	2 GB				
Mémoire interne						
Temps de réponse T100		2 min				
Intervalle de mesure		> 1 min				
Matériaux corps de sonde		Acier inoxydable (1.4571/1.4404) ou titane (3.7035)				
Dimensions (L x d)		470 mm x 45 mm (avec chemin optique 10 mm)				
Poids		3 kg acier inoxydable - 2 kg titane				
		Ethernet (TCP/IP)				
Interface	Numérique	RS-232 ou RS-485 (Modbus RTU)				
Alimentation		12 24 VCC (+/- 10%)				
Consommation		< 8W				
Consoniniation		× 011				
Maintenance		< 0,5 h/mois (usage standard)				
Intervalle de calibration		24 mois				
Garantie		24 mois dans l'Union Européenne				
	6	201				
Pression maximale	Connecteur SubConn	30 bar.				
	Connecteur fixe	3 bar.				
D	Cellule de passage	1 bar. , 2 4 L / min				
Protection		IP 68				
Température du milieu / échantillon		+ 2 + 40 °C				
Température ambiante		- 5 + 55 °C				
Température de stockage		- 20 + 80 °C				
Vitesse de passage		0,1 10 m/s				


Gammes de mesure

Paramètres mesurés individuellement en conditions de laboratoire


Chemin optique (mm)	Paramètre	Principe de mesure	Unité	Gamme de mesure	Limite de détection	Limite de détermination	Résolution min.	Précision
1	NO ₃ -N	Spectrale	mg/L	0100	0,3	0,5	0,05	+/- (5%+0,1)
	NO ₂ -N	Spectrale	mg/L	0150	0,5	1,2	0,12	+/- (5%+0,1)
	DCO_{eq}	Spectrale	mg/L	02200	30	100	10	
	DBO _{eq}	Spectrale	mg/L	02200	30	100	10	
	COD_eq	Spectrale	mg/L	01000	5	10	1	
	COT _{eq}	Spectrale	mg/L	01000	5	10	1	
	MES_{eq}	Spectrale	mg/L	01500	60	200	20	
	KHP	Spectrale	mg/L	04000	5	10	1	+/- (5%+2)
	SAC ₂₅₄	1 longueur d'onde	1/m	02200	15	50	5	
	DCO-SAC _{eq}	1 longueur d'onde	mg/L	03200	22	73	7,3	
	DBO-SAC _{eq}	1 longueur d'onde	mg/L	01500	7,2	24	2,4	
	NO ₃ -N	Spectrale	mg/L	010	0,03	0,05	0,005	+/- (5%+0,01)
	NO ₂ -N	Spectrale	mg/L	015	0,05	0,12	0,012	+/- (5%+0,01)
	DCO_{eq}	Spectrale	mg/L	0220	3	10	1	
	DBO _{eq}	Spectrale	mg/L	0220	3	10	1	
10	COD_eq	Spectrale	mg/L	0100	0,5	1	0,1	
	COT _{eq}	Spectrale	mg/L	0100	0,5	1	0,1	
	MES _{eq}	Spectrale	mg/L	0150	6	20	2	
	KHP	Spectrale	mg/L	0400	0,5	1	0,1	+/- (5%+0,2)
	SAC ₂₅₄	Longueur d'onde spécif.	1/m	0220	1,5	5	0,5	
	DCO-SAC _{eq}	Longueur d'onde spécif.	mg/L	0320	2,2	7,3	0,73	
	DBO-SAC _{eq}	Longueur d'onde spécif.	mg/L	0150	0,72	2,4	0,24	

Paramètre	Principe de mesure	Unité	Facteur	Chemin optique (mm)						
				0,3	1	2	5	10	20	50
Absorbance	spectrale	UA	-	0,012,2	0,012,2	0,012,2	0,012,2	0,012,2	0,012,2	0,012,2
Absorbance	spectrale	1/m	-	507300	152200	7,51100	3440	1,5220	0,75110	0,344
Nitrate N-NO ₃	spectrale	mg/l	-	1,0330	0,3100	0,1550	0,0620	0,0310	0,0155	0,0062
Nitrate NO ₃	spectrale	mg/l	-	4,431460	1,33440	0,67220	0,2788	0,1344	0,06722	0,0309
Nitrite N-NO ₂	spectrale	mg/l	-	1,7500	0,5150	0,2575	0,130	0,0515	0,0257,5	0,013
Nitrite NO ₂	spectrale	mg/l	-	5,61650	1,65500	0,82250	0,33100	0,1750	0,08325	0,03310
COD _{eq}	spectrale	mg/l	-	173300	5,01000	2,5500	1,0200	0,5100	0,2550	0,120
COT _{eq}	spectrale	mg/l	-	173300	5,01000	2,5500	1,0200	0,5100	0,2550	0,120
DCO _{eq}	spectrale	mg/l	-	1007300	302200	151100	6,0440	3,0220	1,5110	0,644
DBO _{eq}	spectrale	mg/l	-	1007300	302200	151100	6,0440	3,0220	1,5110	0,644
KHP	spectrale	mg/l	-	1713300	5,04000	2,52000	1,0800	0,5400	0,25200	0,180
SAC ₂₅₄	254nm	1/m	-	507300	152200	7,51100	3,0440	1,5220	0,75110	0,344
DCO-SAC _{eq}	Longueur d'onde spécif.	mg/l	1,46	7510600	223200	111600	4,4640	2,2320	1,1160	0,4464
DBO-SAC _{eq}	Longueur d'onde spécif.	mg/l	0,48	243500	7,21050	3,6525	1,44210	0,72105	0,3652,5	0,1521
MEST _{eq}	Longueur d'onde spécif.	mg/l	2,6	1304300	401300	20650	8,0260	4,0130	2,065	0,826

Exemple de spectre d'absorption

Intégration OPUS

Mesure des nitrates et nitrites en station de traitement, montage sonde OPUS sur flotteur avec nettoyage automatique par injection d'air comprimé